sm4.cpp 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344
  1. /*
  2. * SM4 Encryption alogrithm (SMS4 algorithm)
  3. * GM/T 0002-2012 Chinese National Standard ref:http://www.oscca.gov.cn/
  4. * thanks to Xyssl
  5. * thnaks and refers to http://hi.baidu.com/numax/blog/item/80addfefddfb93e4cf1b3e61.html
  6. * author:goldboar
  7. * email:goldboar@163.com
  8. * 2012-4-20
  9. */
  10. // Test vector 1
  11. // plain: 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
  12. // key: 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
  13. // round key and temp computing result:
  14. // rk[ 0] = f12186f9 X[ 0] = 27fad345
  15. // rk[ 1] = 41662b61 X[ 1] = a18b4cb2
  16. // rk[ 2] = 5a6ab19a X[ 2] = 11c1e22a
  17. // rk[ 3] = 7ba92077 X[ 3] = cc13e2ee
  18. // rk[ 4] = 367360f4 X[ 4] = f87c5bd5
  19. // rk[ 5] = 776a0c61 X[ 5] = 33220757
  20. // rk[ 6] = b6bb89b3 X[ 6] = 77f4c297
  21. // rk[ 7] = 24763151 X[ 7] = 7a96f2eb
  22. // rk[ 8] = a520307c X[ 8] = 27dac07f
  23. // rk[ 9] = b7584dbd X[ 9] = 42dd0f19
  24. // rk[10] = c30753ed X[10] = b8a5da02
  25. // rk[11] = 7ee55b57 X[11] = 907127fa
  26. // rk[12] = 6988608c X[12] = 8b952b83
  27. // rk[13] = 30d895b7 X[13] = d42b7c59
  28. // rk[14] = 44ba14af X[14] = 2ffc5831
  29. // rk[15] = 104495a1 X[15] = f69e6888
  30. // rk[16] = d120b428 X[16] = af2432c4
  31. // rk[17] = 73b55fa3 X[17] = ed1ec85e
  32. // rk[18] = cc874966 X[18] = 55a3ba22
  33. // rk[19] = 92244439 X[19] = 124b18aa
  34. // rk[20] = e89e641f X[20] = 6ae7725f
  35. // rk[21] = 98ca015a X[21] = f4cba1f9
  36. // rk[22] = c7159060 X[22] = 1dcdfa10
  37. // rk[23] = 99e1fd2e X[23] = 2ff60603
  38. // rk[24] = b79bd80c X[24] = eff24fdc
  39. // rk[25] = 1d2115b0 X[25] = 6fe46b75
  40. // rk[26] = 0e228aeb X[26] = 893450ad
  41. // rk[27] = f1780c81 X[27] = 7b938f4c
  42. // rk[28] = 428d3654 X[28] = 536e4246
  43. // rk[29] = 62293496 X[29] = 86b3e94f
  44. // rk[30] = 01cf72e5 X[30] = d206965e
  45. // rk[31] = 9124a012 X[31] = 681edf34
  46. // cypher: 68 1e df 34 d2 06 96 5e 86 b3 e9 4f 53 6e 42 46
  47. //
  48. // test vector 2
  49. // the same key and plain 1000000 times coumpting
  50. // plain: 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
  51. // key: 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
  52. // cypher: 59 52 98 c7 c6 fd 27 1f 04 02 f8 04 c3 3d 3f 66
  53. #include "stdafx.h"
  54. #include "sm4.h"
  55. #include <string.h>
  56. #include <stdio.h>
  57. /*
  58. * 32-bit integer manipulation macros (big endian)
  59. */
  60. #ifndef GET_ULONG_BE
  61. #define GET_ULONG_BE(n,b,i) \
  62. { \
  63. (n) = ( (unsigned long) (b)[(i) ] << 24 ) \
  64. | ( (unsigned long) (b)[(i) + 1] << 16 ) \
  65. | ( (unsigned long) (b)[(i) + 2] << 8 ) \
  66. | ( (unsigned long) (b)[(i) + 3] ); \
  67. }
  68. #endif
  69. #ifndef PUT_ULONG_BE
  70. #define PUT_ULONG_BE(n,b,i) \
  71. { \
  72. (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
  73. (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
  74. (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
  75. (b)[(i) + 3] = (unsigned char) ( (n) ); \
  76. }
  77. #endif
  78. /*
  79. *rotate shift left marco definition
  80. *
  81. */
  82. #define SHL(x,n) (((x) & 0xFFFFFFFF) << n)
  83. #define ROTL(x,n) (SHL((x),n) | ((x) >> (32 - n)))
  84. #define SWAP(a,b) { unsigned long t = a; a = b; b = t; t = 0; }
  85. /*
  86. * Expanded SM4 S-boxes
  87. /* Sbox table: 8bits input convert to 8 bits output*/
  88. static const unsigned char SboxTable[16][16] =
  89. {
  90. {0xd6,0x90,0xe9,0xfe,0xcc,0xe1,0x3d,0xb7,0x16,0xb6,0x14,0xc2,0x28,0xfb,0x2c,0x05},
  91. {0x2b,0x67,0x9a,0x76,0x2a,0xbe,0x04,0xc3,0xaa,0x44,0x13,0x26,0x49,0x86,0x06,0x99},
  92. {0x9c,0x42,0x50,0xf4,0x91,0xef,0x98,0x7a,0x33,0x54,0x0b,0x43,0xed,0xcf,0xac,0x62},
  93. {0xe4,0xb3,0x1c,0xa9,0xc9,0x08,0xe8,0x95,0x80,0xdf,0x94,0xfa,0x75,0x8f,0x3f,0xa6},
  94. {0x47,0x07,0xa7,0xfc,0xf3,0x73,0x17,0xba,0x83,0x59,0x3c,0x19,0xe6,0x85,0x4f,0xa8},
  95. {0x68,0x6b,0x81,0xb2,0x71,0x64,0xda,0x8b,0xf8,0xeb,0x0f,0x4b,0x70,0x56,0x9d,0x35},
  96. {0x1e,0x24,0x0e,0x5e,0x63,0x58,0xd1,0xa2,0x25,0x22,0x7c,0x3b,0x01,0x21,0x78,0x87},
  97. {0xd4,0x00,0x46,0x57,0x9f,0xd3,0x27,0x52,0x4c,0x36,0x02,0xe7,0xa0,0xc4,0xc8,0x9e},
  98. {0xea,0xbf,0x8a,0xd2,0x40,0xc7,0x38,0xb5,0xa3,0xf7,0xf2,0xce,0xf9,0x61,0x15,0xa1},
  99. {0xe0,0xae,0x5d,0xa4,0x9b,0x34,0x1a,0x55,0xad,0x93,0x32,0x30,0xf5,0x8c,0xb1,0xe3},
  100. {0x1d,0xf6,0xe2,0x2e,0x82,0x66,0xca,0x60,0xc0,0x29,0x23,0xab,0x0d,0x53,0x4e,0x6f},
  101. {0xd5,0xdb,0x37,0x45,0xde,0xfd,0x8e,0x2f,0x03,0xff,0x6a,0x72,0x6d,0x6c,0x5b,0x51},
  102. {0x8d,0x1b,0xaf,0x92,0xbb,0xdd,0xbc,0x7f,0x11,0xd9,0x5c,0x41,0x1f,0x10,0x5a,0xd8},
  103. {0x0a,0xc1,0x31,0x88,0xa5,0xcd,0x7b,0xbd,0x2d,0x74,0xd0,0x12,0xb8,0xe5,0xb4,0xb0},
  104. {0x89,0x69,0x97,0x4a,0x0c,0x96,0x77,0x7e,0x65,0xb9,0xf1,0x09,0xc5,0x6e,0xc6,0x84},
  105. {0x18,0xf0,0x7d,0xec,0x3a,0xdc,0x4d,0x20,0x79,0xee,0x5f,0x3e,0xd7,0xcb,0x39,0x48}
  106. };
  107. /* System parameter */
  108. static const unsigned long FK[4] = {0xa3b1bac6,0x56aa3350,0x677d9197,0xb27022dc};
  109. /* fixed parameter */
  110. static const unsigned long CK[32] =
  111. {
  112. 0x00070e15,0x1c232a31,0x383f464d,0x545b6269,
  113. 0x70777e85,0x8c939aa1,0xa8afb6bd,0xc4cbd2d9,
  114. 0xe0e7eef5,0xfc030a11,0x181f262d,0x343b4249,
  115. 0x50575e65,0x6c737a81,0x888f969d,0xa4abb2b9,
  116. 0xc0c7ced5,0xdce3eaf1,0xf8ff060d,0x141b2229,
  117. 0x30373e45,0x4c535a61,0x686f767d,0x848b9299,
  118. 0xa0a7aeb5,0xbcc3cad1,0xd8dfe6ed,0xf4fb0209,
  119. 0x10171e25,0x2c333a41,0x484f565d,0x646b7279
  120. };
  121. /*
  122. * private function:
  123. * look up in SboxTable and get the related value.
  124. * args: [in] inch: 0x00~0xFF (8 bits unsigned value).
  125. */
  126. static unsigned char sm4Sbox(unsigned char inch)
  127. {
  128. unsigned char *pTable = (unsigned char *)SboxTable;
  129. unsigned char retVal = (unsigned char)(pTable[inch]);
  130. return retVal;
  131. }
  132. /*
  133. * private F(Lt) function:
  134. * "T algorithm" == "L algorithm" + "t algorithm".
  135. * args: [in] a: a is a 32 bits unsigned value;
  136. * return: c: c is calculated with line algorithm "L" and nonline algorithm "t"
  137. */
  138. static unsigned long sm4Lt(unsigned long ka)
  139. {
  140. unsigned long bb = 0;
  141. unsigned long c = 0;
  142. unsigned char a[4];
  143. unsigned char b[4];
  144. PUT_ULONG_BE(ka,a,0)
  145. b[0] = sm4Sbox(a[0]);
  146. b[1] = sm4Sbox(a[1]);
  147. b[2] = sm4Sbox(a[2]);
  148. b[3] = sm4Sbox(a[3]);
  149. GET_ULONG_BE(bb,b,0)
  150. c =bb^(ROTL(bb, 2))^(ROTL(bb, 10))^(ROTL(bb, 18))^(ROTL(bb, 24));
  151. return c;
  152. }
  153. /*
  154. * private F function:
  155. * Calculating and getting encryption/decryption contents.
  156. * args: [in] x0: original contents;
  157. * args: [in] x1: original contents;
  158. * args: [in] x2: original contents;
  159. * args: [in] x3: original contents;
  160. * args: [in] rk: encryption/decryption key;
  161. * return the contents of encryption/decryption contents.
  162. */
  163. static unsigned long sm4F(unsigned long x0, unsigned long x1, unsigned long x2, unsigned long x3, unsigned long rk)
  164. {
  165. return (x0^sm4Lt(x1^x2^x3^rk));
  166. }
  167. /* private function:
  168. * Calculating round encryption key.
  169. * args: [in] a: a is a 32 bits unsigned value;
  170. * return: sk[i]: i{0,1,2,3,...31}.
  171. */
  172. static unsigned long sm4CalciRK(unsigned long ka)
  173. {
  174. unsigned long bb = 0;
  175. unsigned long rk = 0;
  176. unsigned char a[4];
  177. unsigned char b[4];
  178. PUT_ULONG_BE(ka,a,0)
  179. b[0] = sm4Sbox(a[0]);
  180. b[1] = sm4Sbox(a[1]);
  181. b[2] = sm4Sbox(a[2]);
  182. b[3] = sm4Sbox(a[3]);
  183. GET_ULONG_BE(bb,b,0)
  184. rk = bb^(ROTL(bb, 13))^(ROTL(bb, 23));
  185. return rk;
  186. }
  187. static void sm4_setkey( unsigned long SK[32], unsigned char key[16] )
  188. {
  189. unsigned long MK[4];
  190. unsigned long k[36];
  191. unsigned long i = 0;
  192. GET_ULONG_BE( MK[0], key, 0 );
  193. GET_ULONG_BE( MK[1], key, 4 );
  194. GET_ULONG_BE( MK[2], key, 8 );
  195. GET_ULONG_BE( MK[3], key, 12 );
  196. k[0] = MK[0]^FK[0];
  197. k[1] = MK[1]^FK[1];
  198. k[2] = MK[2]^FK[2];
  199. k[3] = MK[3]^FK[3];
  200. for(; i<32; i++)
  201. {
  202. k[i+4] = k[i] ^ (sm4CalciRK(k[i+1]^k[i+2]^k[i+3]^CK[i]));
  203. SK[i] = k[i+4];
  204. }
  205. }
  206. /*
  207. * SM4 standard one round processing
  208. *
  209. */
  210. static void sm4_one_round( unsigned long sk[32],
  211. unsigned char input[16],
  212. unsigned char output[16] )
  213. {
  214. unsigned long i = 0;
  215. unsigned long ulbuf[36];
  216. memset(ulbuf, 0, sizeof(ulbuf));
  217. GET_ULONG_BE( ulbuf[0], input, 0 )
  218. GET_ULONG_BE( ulbuf[1], input, 4 )
  219. GET_ULONG_BE( ulbuf[2], input, 8 )
  220. GET_ULONG_BE( ulbuf[3], input, 12 )
  221. while(i<32)
  222. {
  223. ulbuf[i+4] = sm4F(ulbuf[i], ulbuf[i+1], ulbuf[i+2], ulbuf[i+3], sk[i]);
  224. // #ifdef _DEBUG
  225. // printf("rk(%02d) = 0x%08x, X(%02d) = 0x%08x \n",i,sk[i], i, ulbuf[i+4] );
  226. // #endif
  227. i++;
  228. }
  229. PUT_ULONG_BE(ulbuf[35],output,0);
  230. PUT_ULONG_BE(ulbuf[34],output,4);
  231. PUT_ULONG_BE(ulbuf[33],output,8);
  232. PUT_ULONG_BE(ulbuf[32],output,12);
  233. }
  234. /*
  235. * SM4 key schedule (128-bit, encryption)
  236. */
  237. void sm4_setkey_enc( sm4_context *ctx, unsigned char key[16] )
  238. {
  239. ctx->mode = SM4_ENCRYPT;
  240. sm4_setkey( ctx->sk, key );
  241. }
  242. /*
  243. * SM4 key schedule (128-bit, decryption)
  244. */
  245. void sm4_setkey_dec( sm4_context *ctx, unsigned char key[16] )
  246. {
  247. int i;
  248. ctx->mode = SM4_ENCRYPT;
  249. sm4_setkey( ctx->sk, key );
  250. for( i = 0; i < 16; i ++ )
  251. {
  252. SWAP( ctx->sk[ i ], ctx->sk[ 31-i] );
  253. }
  254. }
  255. /*
  256. * SM4-ECB block encryption/decryption
  257. */
  258. void sm4_crypt_ecb( sm4_context *ctx,
  259. int mode,
  260. int length,
  261. unsigned char *input,
  262. unsigned char *output)
  263. {
  264. while( length > 0 )
  265. {
  266. sm4_one_round( ctx->sk, input, output );
  267. input += 16;
  268. output += 16;
  269. length -= 16;
  270. }
  271. }
  272. /*
  273. * SM4-CBC buffer encryption/decryption
  274. */
  275. void sm4_crypt_cbc( sm4_context *ctx,
  276. int mode,
  277. int length,
  278. unsigned char iv[16],
  279. unsigned char *input,
  280. unsigned char *output )
  281. {
  282. int i;
  283. unsigned char temp[16];
  284. if( mode == SM4_ENCRYPT )
  285. {
  286. while( length > 0 )
  287. {
  288. for( i = 0; i < 16; i++ )
  289. output[i] = (unsigned char)( input[i] ^ iv[i] );
  290. sm4_one_round( ctx->sk, output, output );
  291. memcpy( iv, output, 16 );
  292. input += 16;
  293. output += 16;
  294. length -= 16;
  295. }
  296. }
  297. else /* SM4_DECRYPT */
  298. {
  299. while( length > 0 )
  300. {
  301. memcpy( temp, input, 16 );
  302. sm4_one_round( ctx->sk, input, output );
  303. for( i = 0; i < 16; i++ )
  304. output[i] = (unsigned char)( output[i] ^ iv[i] );
  305. memcpy( iv, temp, 16 );
  306. input += 16;
  307. output += 16;
  308. length -= 16;
  309. }
  310. }
  311. }